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Abstract: Nowadays, the visual reasoning model has been able to answer complex
questions that cannot be answered by the visual question answering model on the CLEVR
dataset. However, most visual reasoning models require a large amount of data for strongly
supervised learning, which is easy to increase the cost of data labeling. In addition, these
approaches will lead to over-fitting, thereby reducing the generalization performance of the
model. To solve the above problem, in this paper, we propose a novel model combined with
active learning. It utilizes active learning to select the most informative and representative
sample as the training data efficiently and accurately. Therefore, fewer samples can be
employed to train a visual inference model to obtain higher accuracy and better
generalization ability. The experimental results from three aspects show the effectiveness of
the proposed approach with active learning for the visual reasoning model.

1. Introduction

With the development of single-modal deep learning, it has been widely employed in various fields,
such as computer vision and natural language processing. Therefore, researchers increasingly hope
to apply it to more complex scenes, for example, inference on daily visual input. However, the
reasoning is a manifestation of human intelligence, which is a very complex task for artificial
intelligence. In order to solve the above problems, a multi-modal visual question answering model
was derived.

Early Visual Question Answering (VQA) models [1] tended to utilize bias in the data to answer
questions, and many effective general deep learning models have been derived by using existing
data sets. However, because the model cannot capture the complex underlying structure behind the
problem, and thus it achieves poorly results on the visual inference data set (CLEVR data set). The
illustrate of the problem is showing in Figure 1.
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Figure 1: CELVR data set example.

To solve the above problem, researchers achieve the underlying reasoning process based on
existing models to implement the visual reasoning model [2-6]. It should be noted that this process
requires a large number of training samples for strongly supervised learning, which is expensive for
data labeling, and leads to over-fitting of the model. For the CLEVR-Human dataset with more
linguistic diversity, it cannot achieve excellent performance.

For this problem, in this paper, we propose a novel visual reasoning model with active learning
and then evaluate it on the CLEVR and CLEVR-Human data sets to validate the effectiveness of
models. The following tasks of visual reasoning are demonstrated to illustrate that active learning
can help to enhance model accuracy and generalization performance:
 The active learning can help to enhance the accuracy of the model on the CLEVR data set.
 Through the fusion of active learning, it can effectively reduce the dependence on data and

the cost of data labeling, so that fewer training samples are utilized to obtain the same accuracy as
the baseline.
 Combined with active learning, while reducing the over-fitting of the model, it helps to

improve the generalization performance of the model.

2. Model Introduction

To executing complex inference tasks successfully, it is necessary to introduce combinatorial
inference into the model explicitly. In this paper, the visual inference model with active learning
consists of two parts, a program generator, and an execution engine. The overall structure of the
model is shown in Figure 2.

Figure 2: Model structure diagram.
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The program generator adopts a sequence-to-sequence (Seq2Seq) structure to map the input
questions to corresponding ground-truth programs. Meanwhile, the ground-truth programs are
defined by the grammar, and the semantics defines their behavior. That is, the CLEVR data set
stores semantic rules by employing pre-specifying the function set  composed of functions . For
each function f, it has a fixed number of parameters ∈  The valid program z, that is, the
ground-truth program is stored in the form of a syntax tree, where each node contains a function
∈, and the number of children of each node is the same as the number of parameters of .

The Seq2Seq model is divide into an encoder and a decoder, which composed of several long-
short term memory (LSTM) units. This structure is more suitable for the above mapping method.
The structure of the program generator is shown in Figure 3.

Figure 3: Model execution process visualization.

Figure 4: Program generator structure diagram.

In the training process of the program generator, it needs to convert the syntax tree with a non-
sequential discretization structure into a function sequence by adopting the way of preorder
traversal, and then map the problem to the function sequence.

Execution Engine is composed of neural module network [13] according to the corresponding
program execution sequence  Specifically, given  the execution engine maps the function ∈
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 in  to the corresponding neural module network  to generate a neural network  that can
answer visual inference questions. Then  accepts  and picture  as inputs, and outputs the
prediction of the answer  It can be seen that, in the process of problem-solving, each
intermediate output is interpretable; thus, the entire model has the ability to combine reasoning.

Since the intermediate output of each neural module network during the execution of the model
is retained and visualized, the change of the model's attention (that is, the model's inference process)
can be known, as shown in Figure 4. In the execution engine, each neural module network is a
standard residual block, which includes two 3x3 convolutional layers. For unary operations, such as
filter_color, filter_shape, employ a single residual block directly. For binary operations, such as
query_size, equal_color, it needs to connect the two residual blocks in the channel dimension
direction of the picture feature matrix. Before the execution engine processes the pictures, it is
necessary to input the pictures to pre-trained ResNet-101 [16] on the ImageNet [17] website for
feature extraction.

In the training phase, the two parts of the model adopt their training samples, respectively. And
then, jointly trained (called fine-tune) is conducted. In other words, we utilize the output of the
program generator as the input of the execution engine. In the process of fine-tune, reinforcement
learning [15] is employed to update the parameters of both models simultaneously.

In recent years, visual reasoning has become a research hotspot. Johnson et al. [2] employed
neural module networks to model the underlying reasoning process explicitly. Runtao Liu et al. [3]
constructed a synthetic diagnostic data set based on expression understanding CLEVR-Ref+ and
proposed a network modular, call IEP-Ref, which can capture combinability clearly. Sjoerd van
Steenkiste et al. [4] studied whether the entangled representation is suitable for abstract inference
tasks. Jiaxin Shi et al. [5] utilized the display neural module to solve complex visual reasoning tasks.
Perez E et al. [6] presented a novel method with linear feature modulation to influence neural
network calculation.

The above method performs well on both the training set and the test set, but only Johnson et al.
[2] conducted generalization performance experiments on the CLEVR-Human data set. Therefore,
we adopt it as a baseline to prove that the proposed approach with the active learning can help to
reduce the over-fitting of the model and the labeling cost, and can enhance the generalization
performance of the model effectively.

3. Active Learning Methods

3.1.Active Learning

Although, researchers have proposed various visual reasoning models, which have been verified on
the CLEVR dataset. However, there is no research on the visual reasoning model of active learning.
Most work on active learning mainly involves image classification, and only a few involve natural
language processing. Active learning can provide a training sample selection method for the model
that can obtain the same or even exceed the baseline performance using fewer labeled samples.

Wang et al. proposed an active learning method based on uncertainty sampling, using CNN for
active learning of image classification [7]. Gal et al. proved that active learning based on Bayesian
uncertainty sampling could achieve better results [8-9]. Samarth Sinha et al. proposed a pool-based
semi-supervised active learning algorithm to learn the sampling mechanism implicitly in an
adversarial manner [10]. Zhang et al. utilized CNN for active learning of sentence classification
[11]. Akshay Krishnamurthy et al. designed an active learning algorithm for cost-sensitive
multiclass classification [12]. The above-mentioned active learning methods mainly focus on image
classification, and do not involve natural language processing and the Seq2Seq model too much.
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Researches show that the accuracy of the program execution sequence is the key to whether the
entire model can output the correct answer. It shows that the program generator is significant for the
model. Therefore, in this paper, we merge the program generator with active learning. From [14], it
can be seen that there are a variety of active learning methods to utilize. Therefore, we mainly
consider uncertainty sampling. Three uncertainty sampling approaches are employed in the program
generator to validate the advantages of the proposed model in this paper.

3.1.1. Least Confidence

The least confidence (LC) formula cannot be applied in the Seq2Seq model directly. Therefore, we
sum the minimum confidence of each word in the sequence. Then, the average value is calculated as
the minimum confidence of the current sequence and sorted in descending order. Finally, filter
samples according to the pre-set threshold. The formulation is defined as follows.
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where ny represents the number of the n-th category, ijx represents the j-th word in the i-th
sequence.

In the program generator, to obtain the optimal global solution needs to consider all possible
values, which is an NP-hard problem. Therefore, we adopt the greedy algorithm of sequence
decoding to approximate the optimal solution.

3.1.2. Maximum Normalized Log-Probability

Researches have shown that LC methods tend to choose long sequence samples since long
sequences have more labeling information. To address this problem, in this paper, we employ the
LC-based Maximum Normalized Log-Probability (MNLP), defined as follows.
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It takes the logarithm of the output classification probability and normalizes it, which can reduce
the error caused by the LC tendency effectively.

3.1.3. Sequence Entropy

Sequence Entropy (SE) is utilized to filter samples. The entropy value is calculated from the output
classification probability, thereby obtaining the amount of information contained in the sample. And
then sort the results in descending order. The higher the entropy of the sequence information, the
greater the degree of sample confusion, and the more difficult it is to classify. Finally, filter the
samples according to the preset threshold. The formulation is defined as follows.

ˆ ˆ ˆ( | ; ) lg ( | ; )y y x y x    (3)

In the input active learning algorithm, the matrix vector is defined as Α , and its specification is
[64,27,44], where the first dimension represents the data batch size, the second dimension
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represents the length of the semantic vector, the third dimension represents the number of
classification categories. The above three algorithms all adopt double nested loops, the time
complexity of all three algorithms is

2( )O n .

3.2.Training Method

In this paper, the active learning model is defined as follows:

 = L   （ ,U, ,B） (4)

where L represents the labeled data set, U is the unlabeled data set, B denotes the query batch

size, and    is the query function which contains the active learning algorithm introduced in
Section 3.1.

The following steps are adopted for active learning.

 * argmaxb x Ux x (5)

* *{ , ( )}b bL L x label x  (6)

*
bU U x  (7)

where
*
bx denotes the most worthwhile sample obtained by the query function by filtering the

corresponding sample information.
The algorithm process is as follows: First, we randomly select 2% samples in U as training

samples and train a new model as the warm-start model for the active learning process. Then, in the
new round of training, input all the samples in U into the warm-start model, and enter the obtained

sample classification probability into    to obtain the amount of information that can measure
whether the sample has a labeled value. The top 5% of samples is obtained by screening the amount
of information. Finally, take this part of the sample from U (do not put it back), mark it, and put it
in L as the active learning training sample. Each subsequent round of screening will take 5% of the
sample from U , mark it, and put it in L , and test the accuracy of the model. If the accuracy meets
the pre-set threshold, the loop ends, otherwise, repeat the above steps. It is worth noting that after
completing the sample selection step, the entire model will be retained on L to alleviate the over-
fitting.

4. Experiment

In order to verify the validity of the model, this paper mainly uses two data sets: CLEVR and
CLEVR-Human, both of which are proposed by Johnson et al. [14]. CLEVR dataset is stored in the
form of tuples (pictures, questions, answers, program execution sequences). The CLEVR-Human
dataset does not have a corresponding ground-truth program, so the Form storage. The detail of
datasets is shown in Table 1.
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Table 1: Basic data set information.

Dataset Number of
pictures

Number of
questions

Number of
answers

Number of ground-
truth programs

CLEVR 70,000 700,000 700,000 700,000

CLEVR-Human 17817 7202 7202 --
In addition, the model of Johnson et al. [2] is selected as a baseline to verify the performance of

the proposed model from three aspects. The experimental of this paper is composed of 36
experiments, and each experiment repeats three times, and the mean is taken as the final
experimental result to reduce the experimental error.

4.1.Model Performance Under the Same Amount of Data

In order to verify the performance of the visual inference model with active learning, we test the
performance of our proposed model and the baseline on the number of training samples of 9k and
18k, respectively. Figure 5 shows the accuracy comparison of the program generator at 9k and 18k
data, and Figure 6 shows the accuracy comparison of the model after fine-tune at 9k and 18k data.

Figure 5: The accuracy comparison chart of the program generator of the model under the data
volume of 9k (left) and 18k (right).

Figure 6: The accuracy comparison chart of the model after fine-tune under the data volume of 9k
(left) and 18k (right).
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From Figure 5, it can be seen that the accuracy of the proposed model is higher than the baseline.
Meanwhile, we can observe the influence degree of different active learning algorithms in model
accuracy. At 9k data, MNLP has the most significant improvement; at 18k data volume, SE has the
best effect.

As can be seen from Figure 6, the accuracy of the model combined with active learning after
fine-tune, is higher than the baseline. Meanwhile, we can observe the influence degree of different
active learning algorithms in model accuracy. At 9k data, MNLP is slightly better than other active
learning algorithms; at 18k data, SE is slightly better than other active learning algorithms. The
reason is that the MNLP algorithm tends to employ the sum of the logarithm of the sample
classification probability as the screening basis, while the SE algorithm tends to utilize the sample's
confusion as to the screening basis. It can be seen that the samples selected by the MNLP algorithm
are more representative, while the samples selected by the SE algorithm have more information.

In summary, the proposed model in this paper has better performance under the same number of
training samples. The reason is that the training samples selected by active learning have higher
training value.

4.2.The Amount of Data Required for the Model to Reach the Same Accuracy

To verify the effectiveness of active learning, the method introduced in section 3.2 is employed to
train the model. Besides, compared our model with the baseline program generator and model fine-
tune, respectively, the amount of data required to achieve the same accuracy.

Table 2: The amount of data required by the program generator to
achieve the same accuracy as the baseline model.

Method The amount of data
9,000 18,000 700,000

Baseline 100% 100% 100%
Ours-LC 60% 55% 60%
Ours-SE 60% 55% 55%

Ours-MNLP 60% 50% 50%

Table 2 shows the number of training samples required in the program generator to achieve
baseline accuracy. From Table 2, we can see that that the mode with active learning requires 60% of
the amount of data to achieve the same accuracy compared with baseline model on the 9k data; on
the 18k data, only need 53.33% to achieve the same accuracy; on the 700k data, compared with
baseline model, only 55% of the data used to achieve the same accuracy.

Table 3 shows the number of training samples required to achieve baseline accuracy after the
model is fine-tuned. From Table 3, we can see that the model with active learning only needs
61.17% of the amount of data to achieve the same accuracy compared with the baseline model on
9k data volume; on the 18k data, only need 53% of the amount of data to achieve the same accuracy;
on 700k data, compared with baseline model, only 56.67% of data required to achieve the same
accuracy.
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Table 3: The amount of data required to achieve the same
accuracy as the baseline model after fine-tune.

Method The amount of data
9,000 18,000 700,000

Baseline 100% 100% 100%
Ours-LC 65% 60% 65%
Ours-SE 60% 55% 55%

Ours-MNLP 60% 50% 50%

In summary, the model based on active learning has a lower dependence on data and lower cost
of data labeling and can use fewer training samples to achieve the same accuracy as the baseline
model.

4.3.Model Generalization Performance Verification

In this subsection, we test our proposed model on the CLEVR-Human dataset to verifies the
generalization performance of the model.

We first utilize the CLEVR dataset to train our model and test the model on the CLEVR-Human
dataset directly. Then, we fine-tune the model on CLEVR-Human and test the performance of the
model on CLEVR-Human to verify the effectiveness of the model with active learning when facing
more linguistic diversity problems. Table 4 shows the difference in overall accuracy between the
model and the baseline. It can be seen that the accuracy of the visual reasoning model based on
active learning on the CLEVR-Human data set is 11.33% higher than the baseline, especially
MNLP method. The accuracy of the model after fine-tune on CLEVR-Human is 10.83% higher
than the baseline, of which the MNLP method has the highest accuracy.

Table 4: The accuracy of the model trained on the CLEVR
dataset is tested directly on CLEVR-Human and after fine-tune on CLEVR-Human.

Method Before fine-tune After fine-tune
Baseline 54.0% 66.6%
Ours-LC 61.3% 72.2%
Ours-SE 66.1% 79.6%

Ours-MNLP 68.6% 80.5%

Through the comparison of the above three aspects, we found that active learning can be used to
determine whether the sample has higher training value by calculating the relevant feature
information of the sample. Due to LC cannot measure the uncertainty of the sample well, it
performs the worst in the three comparison verifications. MNLP can performs best when the sample
demand is small. The reason is that, after performing the logarithmic normalization on LC, MNLP
can better measure the uncertainty of samples and select more representative sample. SE performs
better when the sample demand is large. The reason is that, the sample selected by the sample
information entropy is more informative. Therefore, MNLP is more suitable for a smaller number of
samples, while SE is more suitable for a large sample size.

In summary, first, active learning can ensure that the training cost is reduced without reducing
the accuracy of the model; second, it can reduce the dependence of the model on the data and the
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cost of data labeling; finally, it can alleviate the over-fitting to enhance the generalization
performance.

5. Conclusions

This paper proposes a visual reasoning model based on active learning and finally proves that the
visual reasoning model with active learning is not only higher in accuracy than the baseline model,
but also better than the baseline model in generalization performance. In addition, active learning
can help to reduce the cost of data labeling and the dependence of the model on the data.

However, our proposed model has certain limitations. In the process of active learning, the
model needs to filter samples and retrain the model each time, which reduces training efficiency. In
future work, we will continue to explore possible directions to optimize existing models.
Meanwhile, we will also conduct research and exploration on the other data sets.
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